Northwick Park Academy Trust

Calculation

Policy for

 Mathematics
Purpose of our Calculation Policy

This policy has been written in accordance with the National Curriculum 2014. It is designed to provide pupils with a consistent and fluent progression of learning when using the four main operations.

The calculation policy is organised according to age related expectations as set out in the National Curriculum 2014, however it is vital that pupils are taught according to the stage that they are currently working at, moving on when they are secure. Decisions about when to progress should always be based on the security of the pupils' understanding. Pupils who grasp concepts rapidly should be challenged through being offered rich and sophisticated problems before any acceleration through new content.

It is important that any type of calculation is given a real life context of problem solving approach to help build pupils' understanding of the purpose of calculations, and to help them recognise when to use certain operations and methods.

Whilst this policy focuses on written methods of calculation in mathematics, we recognise the importance of the mental strategies and know that these, alongside known facts form the basis of all calculations.

We also understand that pupils need to experience a range of resources and have different representations shown to them to enable them to understand concepts and build on their own experiences when moving onto written recordings for calculations.

Addition

Early Years Add with numbers up to 10

Count reliably up to 10 objects using 1:1
correspondence.

Addition Year 1

Focus: Adding with 1 and 2 digit numbers to 20, including 0.

In Year 1 the pupils will build on their knowledge of numbers to 20 from the Foundation Stage. They will begin by using simple strategies to add two group of objects together and move onto recording their number sentences.

| Before moving onto addition Pupils need to be able to: |
| :--- | :--- | :--- |
| Form numbers $0-10$ (then to 20) |
| Say numbers in order (at least to 10) |\quad| Pupils begin to add units together using physical objects e.g. |
| :--- |
| objects, counters, Numicon shapes. |
| They count each object to find out how many altogether. |
| Teacher models the language e.g. 3 cups add 6 cups equals 9 cups |
| altogether. |
| They begin to record by drawing pictures/marks. |

Addition Year 2

Focus: Adding two 2 digit numbers

In Year 2 pupils will move to using a blank number line to add 1 and 2 digit numbers. They will learn how to partition 2 digit numbers. They will then move on to a traditional column method.

$27+5=32$	The pupils will move onto adding using a blank number line to add a 1 digit number to a rounded 2 digit number e.g. $20+7=$. When using this method securely, Pupils move on to bridge 10 whilst still adding units e.g. $27+5=$
27 32	
	Use number bonds to add to the nearest multiple of 10 first.
	Once the pupils can confidently add a 1 digit number to a 2 digit number they can move on to adding two 2 digit numbers. To make it simpler for them they should start by adding rounded tens e.g. $21+10$. Extend by adding multiple tens e.g. $21+20$
$21+12=33$ $48+16=64$ (bridging the 10)	Adding two 2 digit numbers using an open number line using their prior knowledge of adding tens and units. The pupils only need to partition the smaller number to add. When the pupils have secured this skill they can begin to add numbers that bridge through the next ten (use 100 squares etc. to help with number knowledge).
$\begin{aligned} & 23+34= \\ & \begin{aligned} & 20+3 \\ &+30+4 \\ & \hline 50+7 \\ &=57 \end{aligned} \end{aligned}$	Adding pairs of 2-digit numbers, moving to the partitioned column method when secure adding tens and units. Start by only providing examples that do NOT cross the tens boundary until they are secure with the method itself.
$\begin{aligned} & 58+43= \\ & \qquad \begin{array}{r} 50+8 \\ \frac{40+3}{40+11} \\ \\ =101 \end{array} \end{aligned}$	Once pupils can add a multiple of ten to a 2-digit number mentally (e.g. 80+11), they are ready for adding pairs of 2-digit numbers that DO cross the tens boundary (e.g. $58+43$).
$\begin{array}{r} 38 \\ +26 \\ \hline 64 \\ \hline 1 \end{array}$	Now they are ready to move on to the traditional column methods. Introduce this initially with numbers that do not bridge any boundaries. It is important pupils remember that it is thirty add twenty NOT $3+2$!

Addition Year 3

Focus: Adding with numbers up to 3 digits.

In Year 3 we will develop the use of a traditional column method to solve addition calculations.

Addition Year 4

Focus: Adding with numbers up to 4 digits.

Year 4 will consolidate their use of the traditional column method and will be able to use it confidently to add numbers up to 4 digits. This could include carrying units, tens and hundreds.

Addition Year 5

Focus: Adding with more than 4 digits.

In year 5 pupils will now use the column method to add decimal numbers in the context of money and measures. It is important that pupils have place value skills beyond 4 digits here and fully understand what a decimal number represents.

$\begin{array}{r} 23481 \\ +\quad 1362 \\ \hline 24843 \end{array}$	Pupils should be working with numbers greater than 4 digits including numbers in the ten thousands and hundred thousands.
$\begin{array}{r} 19 \cdot 01 \\ 33 \cdot 65 \\ +0 \cdot 70 \\ \hline 23 \cdot 36 \end{array}$	Pupils need to start using the column method to add more than two values, still considering place value very carefully. Please Note: 1) It is important that they say 6 tenths add 7 tenths so they understand that they are adding part of a number not a whole number. 2) Empty places should be filled with a zero to show the value of that place.
	Approximate Calculate Check

Addition Year 6

Focus: Adding several numbers with an increasing level of complexity.

In Year 6 pupils will need to use all of the previous addition skills developed to add several numbers with a variety of different decimal places. Many of these problems will be in the context of money or measure.

Subtraction

Early Years Subtract with numbers up to 10

Focus: Subtracting with 1 digit and 2 digit numbers to 20 , including 0.

In Year 1 the pupils will build on their knowledge of numbers to 20 from the Foundation Stage. They begin by using simple strategies to subtract from a group of objects and move to recording their number sentences.

	Pupils begin to subtract units from a large group using physical objects e.g. Counters, Numicon shapes. They count each object to find how many left. Teacher models the language e.g. ' 6 cups take away 3 cups equals 3 cups'. They begin to record by drawing pictures/marks.
	The teacher models what the subtraction looks like in a number sentence. The pupils begin to copy these number sentences onto whiteboards whilst still using objects to help them subtract.
$\begin{aligned} & 8-6=2 \\ & 4-1=3 \end{aligned}$	The pupils become more independent and start to write number sentences into their maths books (squared maths paper) ensuring one digit in each box. Note: Leave a line after each number sentence
$\begin{aligned} & 10-3=7 \\ & 12-5=7 \\ & \hline \end{aligned}$	Pupils begin to subtract numbers that bridge 10 using the same strategies. A 1 digit number is subtracted from a 2 digit number. Introduce language of tens and units. Continue to use objects e.g. Numicon.
	Pupils are now shown how to subtract using a number line. They record their findings orally to begin with before moving on to drawing the jumps themselves.
	Partial number lines are then used as a transition to blank number lines.

Focus: Subtracting with two 2 digit numbers

Pupils will begin to count back using a blank number line to subtract. They will use these methods both written and mentally. Once pupils are confident with this method they will move on to partitioning column method of subtraction.

Pupils now bridge 10 when subtracting units from a two digit
number under 20.
:---
subtract two 2 digit numbers.

Focus: Subtracting with 2 and $\mathbf{3}$ digit numbers

Once pupils become fully confident with the partitioning column method of subtraction they will move onto the compact method of traditional method of column subtraction.

$\begin{array}{ll} 72.47 \\ & / N / / N: \\ \frac{60}{70} 12 \\ \frac{-40 \quad 7}{20 \quad 5} \end{array}=\underline{\mathbf{2 5}}$	Through practical subtraction pupils should be introduced to exchanging. Base 10 is a vital tool here as is a solid grounding with partitioning in different ways. It is important Pupils realize that the value has not changed, we have just partitioned in a different way. As you can see here for 72 47 , before subtracting 7 units, a tens row will need to be exchanged for 10 units. This method can be compacted when the pupils are ready.
$\begin{array}{r} 238-146=92 \\ 100 \\ 200+30+8 \\ -100+40+6 \\ \hline 0+90+2 \end{array}$	Pupils who are secure with the concept of 'exchanging' should now be able to use the partitioning column method to subtract 2 digit and 3 digit numbers.
$\begin{array}{rrr} H & T & U \\ 1 & 13 & 6 \\ - & 0 & 7 \\ \hline 1 & 6 & 2 \\ \hline \end{array}$	Pupils who are very secure and confident with 3-digit expanded column addition should be moved onto the compact column method. Approximate

Focus: Subtracting with numbers up to 4 digits

Pupils will consolidate their knowledge of using the compact method and extend to using 4 digit numbers. They will be introduced to decimal notation by subtracting money.

Focus: Subtracting with numbers beyond 4 digits including decimals

Pupils in Year 5 will continue to use the compact column method of subtraction to solve problems including those where exchanging is required. They will subtract larger integers and begin to subtract decimal amounts.

Approximate
Calculate Check

Subtraction Year 6

Focus: Subtracting with increasingly complex numbers including decimals

In Year 6, pupils need to use mental methods and the compact column method of subtraction to solve an increasingly complex range of calculation including those with integers, those with decimals and those with mixed numbers.
Ensure pupils can confidently subtract using decimal
numbers. It is important that the pupils line up the
decimal point and understand why they are doing this.

Multiplication

Early Years Multiply with concrete objects using repeated addition.

By the end of Reception, pupils are expected to understand the concept of doubling and to be able to double up to 10. Before doubling can be introduced, children need to have a secure knowledge of counting, number facts and addition in order to double.

\(\left.\left.$$
\begin{array}{l}\text { Real life contexts and use of practical equipment to } \\
\text { count in repeated groups of the same size. }\end{array}
$$\right\} \begin{array}{l}Also chanting in 2 \mathrm{~s}, 5 \mathrm{~s} and 10 \mathrm{~s} .

They are encouraged to solve real life problems e.g.

If one pair of wellington boots=2 then 3 pairs=6

They are encouraged to draw pictures and

represent their mathematical thinking through

various representations e.g. Bead strings, Numicon,

cubes\end{array}\right\}\)| Pupils are encouraged to find doubles by creating |
| :--- |
| two groups of the same size. |
| This will be explored during play and problem |
| solving activities. |

Multiplication Year 1

Focus: Solving one step multiplication problems.

In Year 1 the pupils will begin to learn how to multiply. They will work on simple multiplication problems using tangible objects and pictorial recording.

| Before moving onto multiplication pupils need to be able to |
| :--- | :--- |
| Have a secure understanding of addition and subtraction |
| Begin to count in multiples of 2,5 and 10 |\quad| The teacher gives verbal instructions showing children how to |
| :--- |
| 'multiply' the same amount of objects e.g. I give out 3 sweets |
| and I do the same thing 4 times'. The pupils use objects first |
| including Numicon plates, moving to pictorial representations |
| when ready. |
| sweets are in 5 bags altogether? |

Focus: Solving problems involving multiplication

In Year 2 pupils will move from basic multiplication arrays and will be taught different strategies including repeated addition and mental methods

Throughout the year pupil should be working on learning to recall their times table facts for 2, 5 and 10. They will also learn to count in steps of 3.
Pupils should know how to use arrays to solve simple
multiplication calculations.
They will be shown that multiplication of two numbers can
be done in any order (commutative) and will use arrays to
represent this. Physical objects/drawings will be used to
aid working out

Multiplication Year 3

Focus: Multiplying $\mathbf{2}$ digit numbers by 1 digit numbers.

In Year 3 children will move on from arrays and start using the grid method of multiplication. It is essential that before pupils move onto the grid method they are completely confident with all previous methods and have a solid grounding with mental methods and partitioning.

| Throughout the year pupils need to learn their multiplication facts for $\mathbf{2 , 3 , 4 , 5 , 8}$ and $\mathbf{1 0}$. |
| :--- | :--- | :--- |

Focus: Multiplying 2 and $\mathbf{3}$ digit numbers by 1 digit numbers.

In Year 4 pupils will consolidate their use of grid method if needed before moving on to using the compact 'short' method for multiplication.

Focus: Multiplying up to $\mathbf{4}$ digits by 1 or $\mathbf{2}$ digits.

In year 5 pupils will continue to use short multiplication to solve increasingly richer problems that involve multiplying by 1 digit. They will then move on to long multiplication for problems that involve multiplying by 2 digits. Approximation will play an important part with children making approximations before using long multiplication to help check their answer is correct.

Multiplication Year 6

Focus: Consolidating short and long multiplication, multiplying decimals by 1 digit

In Year 6 pupils will consolidate all they know about short and long multiplication. They will also learn the new skills of using short multiplication to multiply decimal numbers to decimal places.

Early Years Group and share small quantities

By the end of Reception, pupils are expected to understand equal groups and share out items in play and problem solving.

Activities might include:

- Sharing of milk at break time
- Sharing sweets on a child's birthday
- Sharing activities in the home corner

They are encouraged to find half of objects and
numbers by sharing into 2 equal groups.
Sharing into equal groups
The pupils will share objects into equal groups
and count how many in each group.
:---
Pupils will begin to understand equal groups and
group items in play and problem solving. They will
start to count in 2 s and 10 s and later in 5 s.

Division Year 1

Focus: Solve one step division problems.

Pupils in year 1 will begin to learn how to divide. They will work on simple division problems using tangible objects and pictorial recording.

Sharing: | The pupils will start by sharing objects between set |
| :--- |
| groups e.g. 12 sweets shared between 3 pupils. They will |
| discuss how to share equally so no group has more or |
| less. |

Focus: Solve problems involving division

Pupils in year 2 will use objects, arrays, diagrams and pictorial representations, and grouping on a number line.
Pupils will be encouraged to use their knowledge of multiplication to solve division.
Pupils will consolidate their understanding of
division as sharing using objects and visual
representations.
They will then move on to division as grouping
using objects such as bead strings.

Division Year 3

Focus: Dividing 2 digit numbers by 1 digit numbers moving from number line methods to short division.
Pupils in year 3 will continue to use a number line to solve division problems and will begin to jump more than one step at a time in the style of 'chunking'. Once confident they will move on to short division without any remainders.

Division Year 4

Focus: Consolidating and extending use of short division

Children in year 4 will continue to use short division to solve division problems. They will work on problems where there are remainders in the first numbers but not in the final answer.
$\left.\begin{array}{|l|l|}\hline \text { Short division: Limit numbers to } \\ \text { NO remainders in the final answer, but } \\ \text { with remainders occurring within the } \\ \text { calculation. }\end{array} \begin{array}{l}\text { Pupils must be secure with the process of short } \\ \text { division for dividing 2-digit numbers by a single digit } \\ \text { (those that do not result in a final remainder), but } \\ \text { must understand how to calculate remainders, using } \\ \text { this to carry remainders within the calculation } \\ \text { process. }\end{array}\right\}$

Division Year 5

Focus: Extending use of short multiplication to 4 digits and remainders

Pupils in year 5 will use short division to solve problems up to 4 digits long. For the first time they will use short division to solve problems that have a remainder in the final answer.

	Consolidate using short division taught in Year 4. When the answer for the first column is zero ($1 \div 5$, as in example), pupils could initially write a zero above to acknowledge its place, and must always carry the number (1) over to the next digit as a remainder. Include money and measure contexts when confident.
$\begin{aligned} & \frac{0663}{8 \longdiv { 5 ^ { 5 } 3 ^ { 5 } 0 ^ { 2 } 9 }} \\ & 2 \longdiv { 2 4 r 3 } = 2 4 \frac { 3 } { 5 } \\ & 5 \longdiv { 1 2 3 } \end{aligned}$	In year 5 pupils will begin to solve division problems where a number up to 4 digits is divided by a single digit number including answers with remainders. These division problems need to be contextual so the pupils learn how to express the remainderas a number or a fraction.
	When confident pupils can be taught to express the reminder as a decimal. Calculating a decimal remainder: In this example, rather than expressing the remainder as $r 2$, a decimal point is added after the units because there is still a remainder, and the remainder is carried onto zeros after the decimal point (to show there was no decimal value in the original number). Pupils to be instructed to extend the division line as they add

Approximate
Calculate
Check

Division Year 6

Focus: Using short division to divide 4 digit numbers and express remainders as decimals and long division for dividing 2 digit numbers

In year 6, pupils will use short division to divide decimal numbers by single digit numbers. The final step of division will be long division which will be used to divide numbers by 2 digits.

$\frac{08 \quad 2 \cdot 15}{86^{6} 49^{1} 7 \cdot 0^{2} 0^{4} 0}$	Consolidate the method of short division taught in year 5 and ensure pupils know how to express the remainder as a decimal or a fraction.
	If needed, chunking can be used as an introduction for long division. To divide by 2 digit numbers, the children will use the method of long division. Any remainders would need to be expressed in a way that matched the context of the problem. Dead Mice Smell Bad could be used as a way of remembering Divide Multiply Subtract Bring down Creating a list of magic numbers (useful numbers) will also support pupils with this method. Extend to 4 digit numbers divided by 2 digit numbers. Real life contexts need to be used routinely

Approximate
Calculate Check

